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Abstract

Molecular dynamics (MD) simulations have been performed for an oligomer of poly (dichlorophosphazene) (PDCPN) containing 56
repeating units i.e. (PCl2N)56, seeking for the orientations of the rotational angles over the P–N skeletal bonds. Two different molecular
systems were simulated. In the first one, the chain was packed into a cubic lattice (i.e. a cubic box with periodic boundary conditions) having
a side length of 22.1 A˚ in order to reproduce a density of about 1 g/cm3, while in the second one, the chain was assumed to be alone in vacuo.
In both systems, the allowed orientations for the skeletal bonds arecis �f � 0� andtrans�f � 180� with a slight preference for this second
orientation. However, a more detailed analysis shows that the lattice produces more extended conformations, and therefore larger molecular
dimensions, than the isolated molecule. Thus, the chain in the lattice is formed by sequences of two or three bonds in thetransconformations
separated bytrans–cis (the average number of bonds in the all-trans conformation iskntl < 2:7� with negligible incidence ofcis–cis
conformations. Thetranssequences are shorter (i.e.kntl < 1:7� in the isolated molecule and the presence ofcis–cisorientations is noticeable.
The a priori probabilities for all the allowed orientations of each pair of bonds obtained by MD simulations can be reproduced by a very
simple RIS model that was employed for the evaluation of the unperturbed dimensions of long chains. The values obtained for the
characteristic ratio wereC∞ < 15:7 in the case of the lattice and 8.0 for the isolated molecule, the former value being in better agreement
with experimental results than the later one. Long range interactions, mainly due to van der Waals forces, may be responsible for the
differences observed in the two systems simulated here, and could also explain the widely different experimental values of molecular
dimensions reported for this kind of polymers.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Polyphosphazenes (PPNs) are polymers formed by an
inorganic backbone of P and N atoms with two side groups,
that may be organic or inorganic, attached to each skeletal
phosphorus atom. Thus, the simplest of all these polymers is
the poly(dichlorophosphazene) (PDCPN) in which the two
side groups are chlorine atoms, (PCl2N)n. All the other PPNs
may be formally obtained by replacement of the chlorine
atoms of PDCPN by other kind of groups and, indeed, this is
exactly the way in which many of these polymers are
synthesized.

Several hundreds of PPNs with very different side groups
have been prepared up to date and their macroscopic proper-
ties have been studied seeking for practical applications,
among which oil-resistant elastomeric materials, flame-resis-
tant polymers and biomedical materials, especially the

biocompatible polymers, can be cited as typical examples
[1–3].

Despite the enormous interest that this kind of
polymers arise in the technological field, molecular
characterization of PPNs is still very rudimentary. For
instance, glass transition temperaturesTg, have been
measured for all the known PPNs, however there are few
publications devoted to magnitudes such as unperturbed
dimensions, dipole moments or viscosimetric parameters
and, what is even worse, the reported values for these
magnitudes are usually very different and, in many cases,
contradictory [4,5].

But, if the experimental characterizations of PPNs are
scarce, the number of theoretical calculations of molecular
properties is even smaller. Some calculations on phospha-
zene compounds employing quantum mechanics [6–11],
molecular mechanics [12–15] and molecular dynamics
[16] procedures, have been reported. However, most of
these calculations concern small molecules and it is rather
difficult to generalize neither the procedures nor the

Polymer 41 (2000) 3337–3347

JPOL 4221

0032-3861/00/$ - see front matterq 2000 Elsevier Science Ltd. All rights reserved.
PII: S0032-3861(00)00515-7

* Corresponding author. Tel.:134-91-885-4664; fax:134-91-885-4763.



conclusions in order to apply them to polymers in solution.
Several years ago, we developed a conformational model
for PDCP based on molecular mechanics calculations [15]
which gives a reasonable description of this polymer, and
allows the evaluation of properties such as molecular
dimensions with reasonable agreement between theoretical
and experimental results. However, it is rather difficult to
generalize this model in order to apply it to other PPNs with
much more complicated side groups than simple chlorine
atoms. Of course, it is quite simple to change the numerical
values of the parameters in order to get an agreement with
experimental results obtained by any PPN, but is more
complicated to explain the reasons for those changes in
basis of the molecular structures [17,18]. The reason of
this difficulty lies in the molecular mechanics’ scheme
that gives serious problems when large side groups with
many rotational angles should be taken into account and
their conformational characteristics have to be merged
with those of the main backbone. This difficulty may be
surmounted with molecular dynamics procedures which
allows the analysis of chains bearing almost any
conceivable side groups. Following this idea, this study
presents molecular dynamics simulations of an oligomer
of PDCPN (the simplest of all PPNs, although we hope to
be able to generalize for more complicated polymers) seek-
ing for the conformational characteristics of the main chain
that are then employed to set up an statistical model based
on the rotational isomeric states scheme [19–21]. This
model can be used to compute any conformational
dependent property of the chain, and the evaluation of the
unperturbed dimensions of the polymer is included as an
example.

2. Molecular dynamics simulations

2.1. Molecular dynamics software

The DL_POLY package [22] was employed for all the
MD simulations carried out in the preparation and warming
up processes of the systems as well as in the data collection
stages. A time stepd � 1 fs (i.e. 10215 s) was employed for
the integration of the equations of motion. A multi-time step
algorithm [23] with a secondary time step of 5 fs was
employed in order to speed up the calculations. The
temperature of the system was kept constant atT � 300 K
while producing the data of interest by means of a Nose-
Hoover thermostat [23] with a relaxation time of 500 fs.
Cut-off distancesrc � 9:6 and 8 Åwere employed, respec-
tively for Coulombic and van der Waals interactions, i.e.
interactions between atomsi and j were set to zero when
their distancerij is larger than the appropriaterc.

2.2. Molecular systems

All the MD simulations presented below were performed
for an oligomer of poly(dichlorophosphazene) containing
56 repeating units PCl2–N–. Fig. 1 shows a schematic
representation of a segment of this chain in the all-trans
conformation for which the rotational anglesf over the
skeletal bonds NP–NP were taken to be 1808. Two different
molecular systems, both based on the 56 units oligomer,
were considered: for one of them, the chain was packed
into a cubic lattice (i.e. a cubic box with periodic boundary
conditions) having a side lengthL � 22:1 �A in order to
reproduce a density of about 1 g/cm3, while in the second
system, the chain was assumed to be alone in vacuo.

In the case of the lattice, the chain was first placed into a
much larger box withL0 � 30 �A in order to avoid interpe-
netration among different segments which would produce
unrealistically high values of energy, thus rendering difficult
and unreliable any conceivable strategy for energy minimi-
zation. An MD simulation at high temperature (i.e. 1000 K)
was then applied to this initial system, and the side of the
box was decreased from the initial valueL0 to the final
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Fig. 1. Schematic representation of a segment of the poly(dichlorophospha-
zene) (PDCPN) chain in the all-transconformation for which the rotational
anglesf over the skeletal bonds NP–NP are taken to be 1808.

Fig. 2. One of the conformations adopted by the oligomer of PDCPN confined within a cubic lattice with periodic boundary conditions along the MD trajectory.
Only a segment of the actual chain is in fact contained inside the cubic box which is filled up with images of several segments of the primary chain.



lengthL with increments of20.5 Å and allowing a equili-
bration time of 1000 fs at each new size. Once the final
volume was obtained, the system was cooled down to
50 K, with increments of250 K and allowing equilibration
times of 1000 fs at each new temperature, in order to mini-
mize the energy and finally warmed up to the working
temperature, again with increments of 50 K and thermosta-
tization times of 1000 fs. All the simulations were thus
performed under NVT conditions, i.e. canonical ensemble.

In the case of the isolated chain, the conformational
energy was minimized with respect to all bond lengths,
bond angles and rotations. The resulting optimized confor-
mation was then warmed up by means of an MD simulation
at increasing temperatures from 0 K to the working
temperature with increments of 50 K, and allowing
1000 fs as equilibration time at each new temperature.

After all this preparation, the data collection process was
started on each system. Thus, an MD simulation of 5× 106

steps, covering a total time span of 5 ns, was carried out for
each system, saving the magnitudes of interest for every
D � 100 fs; thus producingN � 5 × 104 conformations of
each system that were employed in posterior analysis. Figs. 2
and 3 represent one of the conformations adopted by the
systems, lattice in Fig. 2 and isolated molecule in Fig. 3,
along the MD trajectory. It is interesting to note that, as
Fig. 2 shows, only a segment of the actual polymer chain
lies in fact within the box defining the PBC, the rest of the
box is occupied by images of the actual (or primary) chain.
An arbitrary coordinates system having axes lengths of
22.1 Å (the same than the box side on the lattice system),
has been added to the isolated molecule represented in Fig. 3
in order to give an idea of the molecular dimensions.

2.3. Force field

Many different force fields, designed for a wide variety of
molecules, are available nowadays [24], but the applicabil-
ity of most of these fields to PPNs is questionable, because
atoms like P and Cl are not well parametrized. Calculations
on PPN’s have been performed employing very different
force fields, from very simple ones that assumed fixed
bond lengths and bond angles [12–15] to very sophisticated
ones, like CHARMM [25] (Chemistry at HARvard
Macromolecular Mechanics), including alternance of two
different values for the main bond length on the polymer
backbone [6,16]. Some attempts have also been made to
derive a specific force field for PPNs from crystallographic
data and employing either quantum [6,16] or molecular [14]
mechanics calculations. However, it is difficult to ascertain
at this moment which is the best force field for this kind of
polymers, or even if the use of very sophisticated fields may
be compensated by a better description of the system.

In fact, most of the calculations published up to date
employing very different approaches agree in several signif-
icant features for this kind of polymers: The most stable
orientations for the skeletal P–N bonds arecis �f � 0�
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Fig. 3. One of the conformations adopted by the oligomer of PDCPN,
treated as an isolated molecule, along the MD trajectory. An arbitrary
coordinates system having axe lengths of 22.1 A˚ (the same than the side
box on the lattice system), has been added in order to give an idea of the
molecular dimensions.

Table 1
Set of parameters defining the force field employed for the present calcula-
tions (lengths in A˚ ; angles in rad; energies in kcal/mol)

Bond stretching:Ebond� S�k=2��l 2 l0�2
Bond k l0 Reference

Cl–P 403.2 1.99 [14]
N –P 849.6 1.57 [14]

Angle Bending:Eangle� S�k=2��u 2 u0�2
Angle k u0 Reference

P–N–P 36 131 [14]
N–P–N 129.6 121 [14]
N–P–Cl 86.4 108.4 [14]
Cl–P–Cl 216 102 [14]

Intrinsic Barriers:Erot � S�1=2�{ A1�1 1 cos�f��1 A2�1 2 cos�2f��1

A3�1 1 cos�3f��
Rotation A1 A2 A3 Reference

NP–NP 0.3 [14] 1.44 0 [14]
ClP–NP 0 [14] 0 0 [14]

vdW Interactions:Evdw � S4eij ��sij =rij �12 2 �sij =sij �6� with sij �
�1=2�1=6�r0

i 1 r0
j �; eij � �eIej �1=2

Atom e i r0
i Reference

Cl 0.2245 1.975 [14]a

P 0.2 2.1 AMBER [26–29]
N 0.16 1.75 AMBER [26–29]

a The equation employed in Ref. [14] for the vdW interactions is different
from that of the AMBER force field. The values ofe i andr0

i for the Cl atom
were adjusted in order to obtain the same interactions with the equation of
AMBER than those actually used in Ref. [14].



andtrans �f � 180� with a small preference fortrans. The
gauchestates (i.e. local minima placed atf < ^608� found
in earlier calculations employing molecular mechanic
procedures [15] vanish when the bond lengths and bond
angles are allowed to fluctuate. However, the skeletal
bonds may rotate without finding large energetic barriers,
neither intrinsic nor produced by interatomic interactions, so
that there is rather a fast interconversion from one to another
state. Partial charges over P and N atoms of the backbone
are quite large, and therefore, the Coulombic interactions
are very strong. However, since there are both attractions
and repulsions, these interactions play a rather minor role in
the location of the conformational minima.

Most of the published papers dealing with molecular
characteristics of phosphazenes are concerned with crystal-
line structures, or at least with solid samples, so that they
pay much more attention to the location of the most stable
structure than to the possible presence of other local minima
and the passage from one to another, which is a key feature
when studying the behavior of a polymer in solution.

For these reasons, we have chosen the AMBER [26–29]
(Assisted Model Building with Energy Refinement) force
field, which is very simple and quite popular, for the present
work. The parameters that are not included in the standard
set of AMBER were adjusted as to reproduce the same
energies obtained by other authors [14]. Table 1 summarizes

the set of parameters employed in our calculations. The total
energy of a given conformation was evaluated as the sum of
five contributions, namely: bond stretching, angle bending,
intrinsic rotational barriers, van der Waals interactions and
Coulombic energies. Thus,

Etotal � Ebond 1 Eangles1 Erot 1 EvdW 1 Ecoul �1�
Harmonic potentials were employed for both bond

stretching and angle bending energies:

Ebond�
X

bonds

k
2
�1 2 10�2 Eangles�

X
angles

k
2
�u 2 u0�2 �2�

A triple cosine expression was employed for the intrinsic
barrier over PN–PN rotational angles. However, no barrier
was included for ClP–NP rotations. Thus,

Erot �
X

PN2 PNrotat

1
2

{ A1�1 1 cos�f��1 A2�1 2 cos�2f��

1 A3�1 1 cos�3f��} �3�
The van der Waals interactions were represented by a

Lennard-Jones potential among every pair of atoms sepa-
rated by more than two bonds:

EvdW �
X
i.j

4eij
sij

rij

 !12

2
sij

rij

 !6" #
�4�

with sij � �1=2�1=6�r0
i 1 r0

j � andeij � �eiej�1=2:
Interaction among partial charges assigned to every atom

of the sample were employed for Coulombic interactions.
Partial charges were computed for the cyclic trimer using
the gaussian suite of programs [30]. The geometry was
optimized at the restricted Hartree–Fock level of theory
using the 6-311gpp basis set, and a single point calculation
on this geometry with a 6-3111 g(3df,2p) basis was
performed for the calculation of the Mulliken charges.
The values obtained, in units of electrons, wereq�P� �
1:821; q�N� � 20:919 andq�Cl� � 20:451: A precision
Ewald sum with a tolerance parameter of 1026 was
employed for the lattice, while in the case of the isolated
molecule these interactions were computed by means of a
Coulombic sum with distance dependent dielectrics, i.e.
e�rij � � e0rij :

Ecoul � 332:0
X
i,j

qiqj

e�rij �rij
� 332:0

X
i,j

qiqj

e0r2
ij

�5�

with a valuee0 � 4 for the effective dielectric constant of
the medium in both systems.

A scaling factor of 1/2 was applied to both van der Waals
and Coulombic 1–4 interactions, i.e. interactions among
atoms separated by three bonds.

3. Results

The interest of the MD simulation was focused on a
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Fig. 4. The rotational angle over one of the skeletal bonds as function of
time during the first nanosecond of the simulation. The rest of the simula-
tion is not represented in order to enlarge the time axis.



segment containing 18 skeletal bonds located at the center
of the chain in order to avoid distortions produced by end
effects so that the results obtained for this segment could be
employed to represent skeletal bonds within a very long
polymer chain. The value of the rotational anglef over
each of these 18 bonds was recorded every 100 integration
steps so that the raw result of the simulation is a set of 5×
104 values for each one of these 18 rotations. Fig. 4 shows
the variation with time of one of these rotational angles,
both for the lattice and for the isolated molecule, during
the first nanosecond of the simulation. The results for
the remaining 4 ns are very similar and are not shown in
order to employ a larger scale for the time axis. As Fig. 4
indicates, the interconversion amongcis �f < 0� andtrans
�f < 1808� states is rather fast so that the molecule visits all

its allowed conformational space within the time of the
simulation, and the results can be analyzed with statistical
procedures.

The probability distribution of each rotatable bond on the
fragment of interest, taken as independent of its neighbors,
was computed by counting how many times along the
simulation the studied angle reached a given value with a
tolerance of^58, for instance, the results indicated for
f� 100 represent the fraction of conformations in which
95, f , 105: The results, averaged over the 18 bonds
under study, are depicted in Fig. 5, which clearly indicates
thatcis andtransare the two allowed rotational isomers for
these bonds with a marked preference fortrans. Integration
of the areas under the maxima gives the fractions for the two
isomers ofpt < 0:728; pc < 0:272 for the lattice andpt <
0:612; pc < 0:388 for the isolated molecule, both at 300 K,
which suggest energy differences ofEc < 0:59 and
0.27 kcal/mol, respectively, for the lattice and the isolated
molecule.

Figs. 6 and 7 show the distribution of a priori probabilities
for the skeletal pairs of bonds P–N–P and N–P–N in the
lattice system. These two figures indicate the presence of
three preferred conformations, namely tt, tc and ct, with a
rather small participation of cc orientations, specially in the
case of the N–P–N pair of bonds. The tt area for the P–N–P
pair of bonds is split into two maxima which are displaced
ca 15–208 from the fP–N � fN–P � 1808 orientation in
order to relieve the strong interactions among the Cl
atoms attached to contiguous skeletal P atoms (see below
the definition of conformational energyEv�.

The results depicted in Figs. 6 and 7 could be written in a
more quantitative fashion by integrating the area under the
peaks within a given distanceDf from the maxima. Taking
this distance asDf � 408; the probability for the allowed
conformations of both pairs of skeletal bonds in the lattice
could be represented by means of the following matrices
where the rotational isomers are taken in the ordercis
�f� 0�; trans �f � 1808�; and the values have been
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Fig. 5. Probability distributions for rotations over the skeletal bonds, assum-
ing that each bond is independent of all its neighbors, averaged over the 18
bonds on the fragment of interest.

Fig. 6. Distribution of a priori probabilities for the P–N–P pair of skeletal bonds in the lattice. The results were averaged over all alike pairs contained in the
fragment of interest.



normalized to unity:

PPNP�
"

0:0098 0:2710

0:2710 0:4482

#
PNPN �

"
0:0012 0:2703

0:2703 0:4582

#
�6�

According to these probabilities, the chain is formed by
sequences of two or three bonds intrans conformations
disrupted bytrans–cis units while cis–cis conformations
are quite infrequent, ca 1% in the P–N–P pair of bonds
and 0.1% in N–P–N.

The average number of skeletal bonds contained in the
all-trans sequences can be evaluated with the following
scheme. According to Eq. (6), the probability for a P–N
bond being intrans is pt � 0:719 (i.e. sum of the probabil-
ities for tc and tt in the second row of thePPNPmatrix) while
the probability for the P–N–P pair of bonds being in tt is
ptt � 0:448: Thus, the probability of replication (i.e. the
probability of a trans bond being followed by another
trans) is pr � ptt=pt � 0:623; while the probability of inver-
sion (i.e.transbond followed bycis) would be�1 2 pr�: A

sequence ofnt bonds in the all-transconformation requires
n 2 1 replications and one inversion, and therefore, will
have a probability of�pr�n21�1 2 pr�: The average value
kntl can then be evaluated through addition over all the
values ofnt as:

kntl � �1 2 pr�
X∞
i�1

i�pr�i21 � 1
1 2 pr

�7�

which in this case amounts to 2.7 bonds.
The distribution of probabilities for the isolated mole-

cules is represented in Figs. 8 and 9 whose integration,
with the same criteria than in the previous case, gives the
following results:

PPNP�
0:1262 0:2534

0:2534 0:3670

" #
PNPN �

0:0058 0:3713

0:3713 0:2516

" #
�8�

which indicate a smaller preference for the tt conformations
than in the case of the lattice, and therefore, represent a
much more compact polymer chain than in the previous
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Fig. 7. Distribution of a priori probabilities for the N–P–N pair of skeletal bonds in the lattice (see legend for Fig. 6).

Fig. 8. Distribution of a priori probabilities for the P–N–P pair of skeletal bonds in the isolated molecule (see legend for Fig. 6).



case. For instance, the evaluation of the averaged number of
bonds in the alltranssequences, taking into account that the
probabilities of replication arept � 0:592 and 0.326,
respectively, for PNP and NPN pairs of bonds, amounts to
ca kntl < 1:7 in this case.

4. Conformational model

It is rather easy to set up a conformational model, based
on the rotational isomeric states scheme [19–21], that could
be able of reproducing the main features observed in the MD
simulation. Thus, taking the rotational isomers in the order
cis �fc � 0� and trans �ft � 180�; the statistical weight
matrices for the two different pairs of bonds of the
polymer backbone, which are represented in Fig. 10, may

be written as:

UPNP�
v2 v2

1

v2
1 v2

" #
UNPN �

v4 v3

v3 1

" #
�9�

where thetrans–trans state for the pair of bonds N–P–N
has been taken as reference, and the statistical weightsv ,
v1, v2, v3 and v4 are Boltzmann exponentials of their
respective energies whose meaning is summarized in
Table 2.

The partition function for a chain containingx repeating
units may be evaluated by a serial product of these statistical
weight matrices as [19,20]:

Z � �1 0��UPNPUNPN�x21
1

1

" #
�10�
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Fig. 9. Distribution of a priori probabilities for the N–P–N pair of skeletal bonds in the isolated molecule (see legend for Fig. 6).

Fig. 10. Representation of the tt, tc and cc conformations for the P–N–P and N–P–N skeletal pairs of bonds illustrating the Cl…Cl; N…Cl; N…N; N…P and
P…P second-order interactions that produce, respectively, the conformational energiesEv , Ev1, Ev2, Ev3 andEv4.



The a priori probability for a pair of P–N–P bonds within
a long chain (for instance, in the center of a chain containing
2x 1 2 repeating units), being in conformational stateij
(with i and j representingcis or trans), may be computed
as [19,20]:

pij �PNP� � Z21�10��UPNPUNPN�xU0
PNPUNPN�UPNPUNPN�x

�
1

1

" #
�11�

where theU0
PNP matrix is obtained fromUPNP by replacing

all its elements by zero, except elementij which is left
unchanged. The same procedure can be used to compute
the probabilities for the allowed conformations of the
NPN pair of bonds withUPNPU

0
PNP in the central part of

the equation.
The probabilities for all the allowed conformations of

both pairs of bonds can be computed with different values
of the conformational energies seeking for the best agree-
ment with the results of these probabilities obtained from
MD simulations. Thus, the set of energies:Ev � 20:02;
Ev1 � 20:03; Ev2 � 1:57; Ev3 � 0:06 and Ev4 �
3:08 kcal=mol gives:

PPNP�
"

0:010 0:266

0:266 0:458

#
PNPN �

"
0:001 0:275

0:275 0:449

#
�12�

in excellent agreement with the results of MD simulations
for the lattice summarized in Eq. (6), while the set of values
Ev � 0:15; Ev1 � 0:38; Ev2 � 1:41; Ev3 � 20:77 and
Ev4 � 1:18 kcal=mol gives:

PPNP�
0:126 0:253

0:253 0:368

" #
PNPN �

0:006 0:373

0:373 0:248

" #
�13�

in good agreement with the results for the isolated molecule
represented by Eq. (8).

Standard procedures of the matrix multiplication scheme
[19–21] were employed to generate chains containing
different number of repeating unitsx, up to x� 200; with
the statistical weight matrices represented by Eq. (9). The
unperturbed value of the mean squared end to end distance
kr2l0 was computed and transformed into the dimensionless
characteristic ratio which forN � 2x� 400 skeletal bonds

has already reached the asymptotic value for very long
chainsC∞. The results wereC∞ � 15:7 and 8.0, respec-
tively, for the sets of conformational energies representing
the lattice and the isolated molecule.

Very few experimental values of the unperturbed dimen-
sions of PDCPN that could be compared with our theoretical
results have been reported in the literature [4,15,31,32].
And, what is even worse, those experimental values are
quite contradictory since they cover the range from
C∞ < 3 to 100. Experimental difficulties due to crosslinking
of the samples, formation on aggregates or inaccuracy in the
extrapolation of results obtained in good solvents to unper-
turbed conditions have been invoked as reasons for these
discrepancies [15]. However, the most reliable results,
obtained very close tou conditions, suggest a value
C∞ < 20: Under these circumstances, the only assertion
that we can make is that the results obtained with the lattice
are not bad, and certainly much better than those obtained
for the isolated molecule.

It is important to realize that the two rotational states
model indicated in Eq. (9) is intended to provide a reason-
able description of the average behavior of the chain, but it
does not give good pictures of any individual conformation.
For instance, since onlyf � 0 (cis) andf � 180 (trans)
orientations are allowed to the backbone rotational angles,
any individual conformation generated with this model will
be planar, and therefore, very different from actual confor-
mations such as those shown in Figs. 2 and 3. This restric-
tion may be easily removed by splitting the allowed
rotational isomers as the probability plots shown in Figs. 6
and 8 suggest. Thus, splitting thetrans states into
t2�f < 1608�; t0 � �f � 1808� and t1�f < 2008�; i.e. a
displacement of ca. 208 with deviations of the same sign
in both rotational angles for the PNP pairs of bonds accord-
ing to the results shown in Figs. 6 and 8, the statistical
weight matrices, with the states in the orderc, t2, t0, t1,
may be written as:

UPNP�

v2 0 v2
1 0

0 v2
=2 0 0

v2
1 0 0 0

0 0 0 v2
=2

26666664

37777775

UNPN �

v4 v3 v3 v3

v3 1 1 1

v3 1 1 1

v3 1 1 1

26666664

37777775

�14�

This four states model produces three-dimensional (3D)
conformations similar to the actual ones adopted by the
chain and, of course, gives a better description of the aver-
age behavior than the two states model. However, calcula-
tion of averaged molecular dimensions performed with this
model proved that the values ofC∞ calculated with the two
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Table 2
Statistical weights, normalized totrans–transstates, for theUPNPandUNPN

matrices representing the conformational states allowed to the P–N–P and
N–P–N pairs of skeletal bonds in PDCPN

Statistical weight Energy Conformation Interaction Order

v Ev tt in P–N–P Cl…Cl Second
v1 Ev1 ct or tc in P–N–P N…Cl Second
v2 Ev2 tt in P–N–P N…N Second
v3 Ev3 ct or tc in N–P–N N…P Second
v4 Ev4 tt in N–P–N P…P Second



and four states schemes differ only in ca. 10% and for that
reason, we prefer to use the easier two states model in this
paper.

On the other hand, although the statistical weightsvs
may be related to short range interactions (see Table 2
and Fig. 10), they are not calculated by computing those
interactions. On the contrary, a very large number of actual
conformations adopted by a relatively long segment (i.e. 18
repeat units) embedded within a much longer oligomer (i.e.
56 repeat units) were analyzed seeking for the probability of
incidence of every allowed orientation, which will depend
on all interactions occurring in the system, including both
short- and long-range interactions as well as intermolecular
interactions in the case of the lattice. This is the reason why,
even if the short-range interactions are identical for the
lattice and the isolated molecule, the probability matrices
for these systems, represented, respectively, by Eqs. (6) and
(8), are quite different, reflecting the fact that extended
conformations are more frequently adopted in the lattice
than in the case of the isolated molecule.

5. Discussion

The fact that the lattice and the isolated molecule behave
on very different ways has appeared many times above, e.g.
compare solid and dot lines in Fig. 5, probability
distributions of Figs. 6 and 7 and Eq. (6) with those in
Figs. 8 and 9 and Eq. (8), values ofkntl and C∞ for the
two systems, etc. All these results indicate that the lattice
has a larger preference fortrans, and therefore, produce
more extended conformations, than the isolated molecule.
However, this difference may be observed in a much more
visual approach by comparing Figs. 2 and 3. Certainly these
figures represent only one among the almost infinite number
of conformations allowed to these systems, or even among
the 5× 104 conformations analyzed for the whole MD simu-
lation, but examination of the results indicates that
conformations similar to those represented in Figs. 2 and
3 are frequently visited by these systems.

And now, the important question is, why these two
systems, which after all represent the same oligomer,
behave in such different ways? The main difference
among these two systems lies in the way of dealing with
long-range intramolecular interactions, i.e. interactions
among atoms separated by more than two skeletal bonds.
In the case of the lattice, these interactions are compensated
by intermolecular interactions between the primary chain
and its images lying within the box, while there is no
compensation of any kind in the case of the isolated mole-
cule that may fold over itself in order to place different
segments in relative orientations that would produce neat
long range attractions and consequently, the more compact
conformations are then favored. Long-range interactions are
produced both by Coulombic and van der Waals forces. In
the case of PDCPN, and probably in many other PPNs, the

partial charges on the skeletal atoms are rather high accord-
ing to quantum mechanics calculations [6,11,16], which
suggests that Coulombic forces may be strong. But, on the
other hand, thee parameter governing the strength of the
van der Waals interactions (see Eq. (4) and Table 1) is larger
for Cl, N and P atoms than for C and H, and consequently,
when these atoms are placed at the appropriate distance,
rather strong attractions may be raised which will be
much stronger than in the case of hydrocarbon chains
such as polystyrene, for instance.

Some exploratory calculations were performed in order to
ascertain the effect of Coulombic interactions on the general
features of the polymer. The results of these calculations are
most surprising. First of all, when a distance-independent
dielectric constant is employed, i.e. takinge�rij � � e0 �
constant in Eq. (5), the results obtained are virtually iden-
tical to those computed with Eq. (5) which are shown in
Figs. 8 and 9 and Eq. (8). The reason is that all the
significant interactions are produced when the distance
among the interacting atoms lies within a rather narrow
interval, ca. 3:1 2 4:2 �A; as it can be seen by calculating
the distances among the interacting atoms on the conforma-
tions represented in Fig. 10 that define first and second-order
interactions for the allowed conformations of the chain.
However, removal of Coulombic interactions produces a
noticeable increase ofcisconformations, both in the isolated
molecule and the lattice system. For instance, the probabil-
ity matrices for the isolated molecule, equivalent to Eq. (8)
when electrostatic interactions are taken into account,
become in this case:

PPNP�
0:2056 0:2566

0:2566 0:2812

" #
PNPN �

0:0160 0:4203

0:4203 0:1434

" #
�15�

Thus, removal of Coulombic interactions produces a
substantial increase of cc conformations with a consequent
decrease of tt states for the PNP pair of bonds which reach
an almost freely rotating situation. This effect is much smal-
ler in the case of the NPN pair of bonds although it also goes
in the sense of decreasing the probability of the most
extended conformation. Molecular dimensions are therefore
decreased andC∞ � 6:1 is obtained with the probabilities
shown in Eq. (15).

It is easy to rationalize the variation of probabilities
produced by removal of electrostatics. Thus, in the case of
PNP pair of bonds, the interactions produced in the
four allowed states are:Ev in tt due to the Cl…Cl inter-
action whose Coulombic contribution depends on the
partial charge over Cl atoms, i.e.Ecoul , �qcl�2 �
�20:451�2; Ev1 in tc arising from N…Cl interactions in
which Ecoul , �qNqCl� � �20:451��20:919� Ev2 in cc
from N…N with Ecoul , �qN�2 � �20:919�2: Coulombic
interactions are repulsive in the three cases, but their
strength increases from tt to cc and therefore the tt state is
disfavored by removal of these interactions. In the case of
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the NPN pair of bonds, Coulombic interactions are repulsive
for the cc state and attractive for the other two, and for this
reason cc is favored by removal of these interactions,
although it still keeps a very low probability due to van
der Waals interactions. Coulombic interactions are attrac-
tive and almost identical in ct and tt states of the NPN pair of
bonds, so that their relative probabilities does not change
substantially when these interactions are removed. The
reason is that they are mainly due to the two Cl…P pairs
(first-order interaction) and the N…P (second-order interac-
tion); the distance, in A˚ , among these atoms arerClP < 3:5;
rNP < 4:3 in tt andrClP < 4:2; rNP < 3:3 for tc.

The effect of electrostatic interactions on the lattice
system is similar to that produced on the isolated molecule.
Thus, removal of these interactions provides the following
probabilities for the lattice:

PPNP�
0:0745 0:3454

0:3454 0:2347

" #
PNPN �

0:0056 0:3932

0:3932 0:2080

" #
�16�

Comparison of these values with those indicated in
Eq. (6), where the Coulombic interactions were taken into
account, shows a substantial increase of tc and ct conforma-
tions at the expense of tt. Calculation of the molecular
dimensions for this system providesC∞ � 12:5 which is
noticeably smaller than the value 15.7 obtained when the
Coulombic interactions are considered, but still much higher
than the results found for the isolated molecule.

However, this artificial removal of electrostatic interac-
tions probably is not a realistic simulation of the effect
produced in the system by a change on the polarity of the
solvent or even by the addition of ionic salts. Thus,all
electrostatic interactionsare removed in the calculation
regardless of the distance among the interacting atoms,
while the effect of the solvent will be to solvate the chain
and modify the interactions among atoms that are separated
by a distance large enough as to allow a molecule of solvent
to be placed in between. Consequently, short-range interac-
tions among atoms separated by ca. 3–4 A˚ should be
scarcely affected by the solvent. On the contrary, since the
chain holds large atomic partial charges, polar solvents may
produce a better solvation, thus favoring the extended
conformations as in the case of the lattice.

Thus, it seems that long-range interactions, mostly due to
van der Waals forces, play an important role on the prob-
ability distribution of the conformations allowed to this
polymer, and therefore, produce a dramatic change on the
averaged value of its molecular dimensions. If this interpre-
tation was correct, it would also show up in the experimental
results obtained from measurements performed in solution.
A rather strong effect of the solvent in the values ofkr2l,
from solvents that will not compensate the intramolecular
interactions, thus producing low values ofkr2l to situations
in which the solvent–polymer interactions may be very
strong and consequently will give very high dimensions.

On the other hand, this prominent role of the solvent will
increase the difficulty and decrease the accuracy of any
extrapolation procedure employed for obtaining unper-
turbed dimensions. This is exactly the situation described
in many experimental studies of PPNs: wildly different
results and inaccurate extrapolations. A good example is
provided by the experimental determinations of the mole-
cular dimensions of PDCPN from viscometric measure-
ments in toluene (low polarity solvent) and chloroform
(high polarity) solutions that gave [15,31]C 0∞ < 3:3 and
20, respectively (whereC 0∞ � kr2l=Nl2 represents the char-
acteristic ratio obtained with perturbed valueskr2l instead of
unperturbedkr2l0 asC∞).

Furthermore, a well-knownexperimental trick when
working on size exclusion chromatography of PPNs
employing low polarity eluents consists in the addition of
small amounts of quaternary ammonium salts in order to
eliminate anomalous signals at high elution volumes
[33–35], i.e. low molecular dimensions. These signals
may be produced by chains collapsed to highly compact
conformations by the effect of intramolecular interactions
that will become less intense when some ions are added to
the solution, thus favoring the solvation of the chain.
Finally, some experimental determinations of radius of
gyration of several PPNs, mainly obtained by light scatter-
ing of solutions in low polarity solvents, report a scaling law
kS2l1=2 � QMq with values of caq < 1=3 for the exponent
[4,35,36], which suggest polymer chains having a globular
shape very similar to most of the conformations adopted by
the isolated chain along the MD simulation, for instance, the
one represented in Fig. 3. These same studies showanom-
alousup turns of the log(ks2l1/2) versus log(M) plots in the
region of low molecular masses, suggesting that the size of
the chaindecreases with increasing M. These up turns could
also be explained on the grounds of long-range interactions
because the chain requires a minimum length before a u-turn
may be produced without raising very strong van der Waals
repulsions. Our simulations on PDCPN show that this mini-
mum length is about 10 repeating units in this polymer, but
it may be substantially increased in other PPNs bearing
bulky side groups.

Of course, we are aware that the solutions of PPNs are
rather complicated systems and probably it will require
much more time and effort to understand their behavior.
But, we would like to stress the point that long-range intra-
molecular interactions may play an important role in the
peculiaritiesof these systems.
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